Tetrahedron 64 (2008) 9191–9196

Contents lists available at [ScienceDirect](www.sciencedirect.com/science/journal/00404020)

Tetrahedron

Tetrahedror

journal homepage: www.elsevier.com/locate/tet

Transformations of 2,2-dimethyl-2,4-dihydro-3H-pyrrol-3-on-1-oxide derivatives in the Vilsmeier–Haack reaction conditions

Christina Becker^{a,b,}*, Galina Roshchupkina ^b, Tatyana Rybalova ^b, Yuri Gatilov ^b, Vladimir Reznikov ^{a, b}

^a Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russian Federation ^b N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, akad. Lavrent'eva ave. 9, 630090 Novosibirsk, Russian Federation

article info

Article history: Received 30 June 2008 Accepted 17 July 2008 Available online 23 July 2008

Keywords: Nitrogen heterocycles Rearrangement 1-Hydroxy-1,2-dihydro-3H-pyrrol-3-one Vilsmeier–Haack reaction

ABSTRACT

Enhydroxylaminones-2,2-dimethyl-2,4-dihydro-3H-pyrrol-3-on-1-oxides were shown to give various chlorinated products in the Vilsmeier–Haack reaction. The general sequence of the reaction steps is determined and the extent of the reaction was shown to be strongly dependent on the substrate structure.

- 2008 Elsevier Ltd. All rights reserved.

1. Introduction

 β -Oxonitrones (enhydroxylaminones), in contrast to β -diketones and their nitrogen analogues- β -ketoimines or enaminones (in general, this tautomeric form is predominant), are on insufficiently explored class of organic compounds. There are a few reports concerning enhydroxylaminones where their reactions with some nucleophilic and electrophilic reagents were described. An electrophilic attack in these compounds is usually directed to the enamine carbon or oxygen of the hydroxyl group.^{[1](#page-5-0)} The behavior of enhydroxylaminones in the Vilsmeier–Haack reaction has not been previously studied. The derivatives of the isoxazolin-5-one that could be considered as topological endo-cyclic analogues of enhydroxylaminones are the most studied objects, and even for these compounds some of the reactions with electrophiles are ambiguous, and are the matter of a discussion among researchers. It was shown, in particular, that the direction of the reaction of isoxazoline-5-ones with the Vilsmeier reagent, $2-6$ and the composition of the products depends noticeably on the structure of the substrate and on the reagents ratio. In contrast to the isoxazolin-5-one derivatives, the enhydroxylaminones derived from 2,2-dimethyl-2,4-dihydro-3H-pyrrol-3-on-1-oxide possesses an hydroxyl group—one more potential reaction center. In the present work, the behavior of these enhydroxylaminones in the Vilsmeier– Haack reaction has been studied.

2. Results and discussion

Pyrrolin-3-on-1-oxide derivatives 1 undergo a series of successive transformations in the reaction with the Vilsmeier reagent, which lead primarily to the 4-chloro-substituted enaminones 2 and then to the dichloro-substituted 2H-pyrrole derivatives 3. The reaction of 5-methyl-substituted pyrrolin-oxide 1c proceeds further to give enamide 4; increasing the amount of the Vilsmeier reagent results in the formation of enaminoimine 5 as a main product and enaminoaldehyde 6 —as a by-product [\(Scheme 1\)](#page-1-0).

The fact that enaminones 2 are the intermediates in the formation of dichloroderivatives 3 is confirmed by the reaction of 2a with the Vilsmeier reagent, producing the corresponding dichloroderivative 3a in a good yield.

The reaction progress of 1 depends on the character of the substituent at the fifth position of the pyrroline cycle. Thus, in the case of phenyl- and trifluoromethyl-substituted derivatives 1a,b, the reaction could be stopped at the formation of enaminones 2, while in the case of tert-butyl-substituted pyrroline 1d, the only isolated product was dichloro-substituted compound 3d. The corresponding enaminone 2d was not obtained ([Scheme 1](#page-1-0)).

Pyrroline 1c transforms into enamide 4 under Vilsmeier–Haack reaction conditions, which exists in solution as an equilibrium mixture of two conformers ([Scheme 2\)](#page-1-0). ¹H NMR spectrum in DMSO- d_6 (30 °C) reveals the signals of methylene protons of conformer A at 5.84 and 4.80 ppm and of conformer B at 5.11 and 4.55 ppm; the signals of the aldehyde proton are at 8.94 and 8.79 ppm for A and B, respectively (molar ratio of conformers: A/ $B=1.2:1$). An exchange between the protons at 5.84 and 5.11 ppm,

Corresponding author. Tel.: $+7$ 383 3307 387; fax: $+7$ 383 3309 752. E-mail address: bchs@nioch.nsc.ru (C. Becker).

^{0040-4020/\$ –} see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2008.07.070

4.80 and 4.55 ppm, 8.94 and 8.79 ppm were observed when the temperature was increased to 80 \degree C. Decreasing the temperature back to 30 °C restores the initial spectrum.

The reaction of $1c$ with a larger excess of POCl₃ (see details in Section [4](#page-3-0)) gives enaminoimine **5** along with enaminoaldehyde **6**. Enaminoimine 5 was probably formed as the result of the electrophilic attack of one more equivalent of the Vilsmeier reagent at the methylene group in intermediate 7 (Scheme 1). Similar transformations were observed earlier for the Vilsmeier–Haack reaction of 3-oxyl-2,2,4,4-tetramethyl-5-methyleneimidazolidine-1-carbal-dehyde derivatives.^{[7](#page-5-0)}

The probable scheme of the transformation of pyrrolines 1 into the products 2–4 includes initial nucleophilic attack of the chloride ion at the carbon of the carbonyl group facilitated by electrophilic catalysis by the Vilsmeier reagent. Further migration of the chlorine atom to position 4 of the heterocycle (intra- or intermolecular) accompanied by the removal of a good leaving group gives rise to enaminone 2. At the next step, a nucleophilic attack of the chloride ion at the carbonyl carbon occurs for the second time, and subsequent elimination leads to the dichloro-substituted compound 3. In the case of the methyl-substituted pyrroline, further electrophilic attack of the Vilsmeier reagent at nitrogen atom accompanied by the removal of a proton from methyl group gives an intermediate 7. Its further hydrolysis affords the N-formylsubstituted product 4 (cf. Ref. [7\)](#page-5-0) (Scheme 1).

The alternative route of the transformation of compounds 1 to 2 could be an electrophilic attack of the Vilsmeier reagent on the oxygen atom of N-hydoxylamino group followed by chloride ion attack on the carbon atom at the position 4 of heterocycle and simultaneous removal of a good leaving group from nitrogen atom to form product 2 (Scheme 3). An indirect argument against this way is the fact that the reaction of N-benzoyloxy-substituted compounds 8 either with ammonium chloride or with triethylbenzylammonium chloride in DMF yielding compounds 2 does occur, but proceeds very slowly (several weeks at room temperature).

Of note is that the reaction of exo-cyclic enhydroxylaminone 9 with the Vilsmeier reagent proceeds in the same manner and leads to chloro-substituted compound 10 (Scheme 4). In other words, such a behavior in the Vilsmeier–Haack reaction seems to be quite general for enhydroxylaminones, at least at the first stages of the process.

One could suppose that the Vilsmeier–Haack reaction with pyrrolines 1 proceeds in this way due to the possibility of electrophilic attack of the Vilsmeier reagent at the oxygen atom of the hydroxylamino group. In order to suppress this route, N-benzoyloxy-substituted pyrroline derivatives 8 were involved into the reaction. Compounds 8 were synthesized by the acylation of compounds [1](#page-5-0) with benzoyl chloride.¹

It was found that the reaction of pyrrolines 8a,d with the Vilsmeier reagent leads to the formation of 4-benzoyloxysubstituted 2H-pyrrole derivatives 11a,d, dichloro-substituted derivatives 3a,d, and iminoketones 12a,d, respectively (Scheme 5). The structure of compound 11a was proved by X-ray diffraction analysis ([Fig. 1\)](#page-2-0).

Figure 1. X-ray structure of 11a.

The formation of these products is in line with the reaction scheme proposed above [\(Scheme 1](#page-1-0)). The first step of the transformation seems to be the formation of intermediate 13. Then, either migration of chlorine atom with simultaneous removal of benzoyloxy group finally gives compound 3, or migration of benzoyloxy group leading to ester 11 occurs. Hydrolysis of the latter gives product 12 on treatment of the reaction mixture. Isolation of individual compound 12 failed because it is chromatographically inseparable from compound 3, but according to 1 H, 13 C NMR, and GC–MS data for the mixture of these products, compound 12 has the suggested structure.

A similar rearrangement was observed earlier while studying the acylation reaction of nitrones bearing at least one hydrogen atom at the β -carbon of the nitrone group.⁸⁻¹² The authors concluded that the rearrangement proceeds intramolecularly either as a sigmatropic shift (like Hetero-Oxy-Cope rearrangement) or via the ion-pair mechanism. The possibility of intermolecular rearrangement either was rejected on the base of kinetic study or wasn't considered at all. The realization of a cyclic planar transition state in the case of the intermediate 13 is impossible, which makes the probability of the rearrangement as a concerted process doubtful. The Vilsmeier–Haack reaction with an equimolar mixture of compounds 8a and 14d gives products 15a and 11d, as follows from GC–MS data. Obviously, these products can be formed exclusively as the result of intermolecular rearrangement (Scheme 6, the molar ratio of products is given in parentheses).

The migration of benzoyloxy group in compound 8 does not proceed even at heating up to 100 $\,^{\circ}$ C. This suggests that nitrogen– oxygen bond cleavage proceeds by heterolytic mechanism and conjugated electron-withdrawing carbonyl group hampers this process.

Thus, in the course of the Vilsmeier–Haack reaction, the acyloxy group is removed from the nitrogen atom and migrates to the position 4 of heterocycle; the migration can proceed intermolecularly.

Taking into account lower stability of the alkoxide anion in comparison to the acetate anion, the preservation of N-alkoxy group in N-alkoxyenaminone molecules 16 and 17 in the course of the Vilsmeier–Haack reaction could be expected. In fact, the reaction of compound 16, derived according to Scheme 7, with the Vilsmeier reagent resulted in the formation of 12a along with dichloro-substituted 2H-pyrrole 3a and benzyl chloride. The formation of benzyl chloride probably occurs as a result of S_N2 -type substitution with simultaneous formation of pyrroline 1a, which can react further, as described above, to give dichloroderivative 3a ([Scheme 1\)](#page-1-0). The formation of ketone 12a seems to be a result of the sequence of transformations similar to those described above ([Schemes 1 and 5\)](#page-1-0) including the migration of benzyloxy group to the position 4 of heterocycle and hydrolysis of the migration product-the vinyl ether (Scheme 8).

The reaction of N-methoxy-substituted compound 17 with the Vilsmeier reagent also leads to the formation of dichlorosubstituted compound 3a. Considerable amounts of the starting substrate were isolated along with 3a, although the former has been completely consumed according to the TLC data of the reaction mixture (Scheme 8).

Trifluoromethyl-substituted derivative 8b reacts differently to the other N-benzoyloxy-analogues. The N-substituent is retained and the main product of the reaction is compound 18 along with some amount (\sim 35%) of the starting material, although it was not detected in the reaction mixture by TLC before its treatment. The probable scheme of the reaction includes the intermediate formation of 13b and its further transformation either into 18, or into initial compound 8b on treating the reaction mixture (Scheme 9).

3. Conclusion

It was shown that the Vilsmeier–Haack reaction with enhydroxylaminones—the derivatives of 2,2-dimethyl-2,4-dihydro-3H p yrrol-3-on-1-oxide $-p$ roceeds via the loss of N-substituent and leads to the chloro-substituted enaminones and then to the dichloro-substituted 2H-pyrrole derivatives. 4-Formyl-substituted products are not formed in all cases. The rearrangement of N-benzoyloxy-derivatives was observed and it was shown to proceed intermolecularly.

4. Experimental

4.1. General

IR spectra were recorded with Bruker IFS 66 spectrometer as KBr pellets (concentration 0.25%, thickness of a pellet 1 mm) or as solutions in CCl4 (concentration 2%). UV spectra were measured with Specord M-40 spectrophotometer in EtOH. NMR spectra were recorded with Bruker WP 200 SY, Bruker AC 200, Bruker AV 300, and Bruker AM 400 spectrometers on 5% solutions in CDCl₃ or $(CD₃)₂CO$ with solvent as an internal standard at 25 °C. The composition of the reaction mixtures was found from GC–MS data using quadrupole MS (Hewlett–Packard MSD 5971) coupled to HP G1800A GC fitted with HP-5 fused silica gel column, injector and detector (MSD) temperatures were 280 and 170 \degree C, respectively, MSD was operated at 70 eV. High-resolution mass spectra were recorded with Finnigan MAT 8200 mass spectrometer with a direct sample injection and resolution of 10,000. Melting points were measured using 'Boetius' plate and are uncorrected. TLC monitoring was carried out on Silufol-254 or Alufol-254 plates. In all cases solvent evaporation was carried out under reduced pressure.

Compounds 2a, 14d were identified by comparing with ones synthesized previously.^{[1](#page-5-0)} Compounds **8a,c, 17,¹ 1a–d,**^{[13](#page-5-0)} and $\mathbf{9}^{14}$ $\mathbf{9}^{14}$ $\mathbf{9}^{14}$ were synthesized as described.

4.2. Syntheses

4.2.1. 1-(Benzoyloxy)-2,2-dimethyl-5-(trifluoromethyl)- 1,2-dihydro-3H-pyrrol-3-one 8b

Benzoyl chloride (0.45 mL, 3.84 mmol) was added dropwise to a well stirred solution of pyrroline $1b$ (0.50 g, 2.56 mmol) and NaOH (0.26 g, 6.40 mmol) in water (15 mL) under argon. The reaction mixture was stirred for 30 min, then extracted with $CHCl₃$ $(3\times25 \text{ mL})$; combined extract was dried by MgSO₄ and then evaporated. The crude product 8b was purified on a silica gel column (chloroform). Yield: 60%, mp 36–37 °C. R_f (3% MeOH/CHCl₃) 0.68. [Found: C 55.91, H 3.86, N 4.92. C₁₄H₁₂F₃NO₃ requires: C 56.19, H 4.01, N 4.68%.] $\delta_{\rm H}$ (200 MHz, (CD₃)₂CO) 1.44 (6H, s, C²-(CH₃)₂), 6.35 (1H, s, $C^5 = C^4 - H$), 7.5–7.8 (3H, m), 8.0–8.1 (2H, m, Ph). δ_C (50 MHz, (CD₃)₂CO) 22.3 (C²–(CH₃)₂), 75.5 (C²), 111.9 (C⁴), 120.7 (q, J 303 Hz, CF₃), 127.7, 129.9, 130.6, 135.2 (Ph), 162.2 (q, J 37 Hz, C⁵), 164.3 (O–C=O), 201.2 (C=O). v_{max} (KBr) 1768 (O–C=O), 1724 (C=O), 1179, 1149 (CF₃) cm $^{-1}$. UV (ethanol): λ_{\max} (lg ε)=232 (4.10), 283 nm (4.04).

4.2.2. 1-(Benzoyloxy)-5-tert-butyl-2,2-dimethyl-1,2-dihydro-3H-pyrrol-3-one 8d

Compound 8d was synthesized by the method above, but the reaction time was 4 h. The precipitate of 8d was filtered off, washed with 2 mL of cold water, dried, and purified by preparative TLC on silica gel (CHCl₃/CH₃OH (40:1)), yield: 0.13 g (41%). Mp 117–118.5 °C (hexane). R_f (3% MeOH/CHCl₃) 0.73. [Found C 71.23, H 7.41, N 4.88. $C_{17}H_{21}NO_3$ requires: C 71.08, H 7.32, N 4.88%.] δ_H (200 MHz, CDCl₃) 1.28 (9H, s, C-(CH₃)₃), 1.29 (3H, s), 1.35 (3H, s, C²-(CH₃)₂), 5.46 (1H, s, C^4H), 7.4–7.7 (3H, m), 8.0–8.1 (2H, m, Ph). δ_C (100 MHz, CDCl₃) 23.9, 27.3 (C^2 –(CH₃)₂), 28.7 (C–(CH₃)₃), 34.4 (C–(CH₃)₃), 73.7 (C^2), 104.9 (C⁴H), 127.3 (*i*-Ph), 128.9, 129.7 (*o*,m-Ph), 134.0 (*p*-Ph), 164.2 (C⁵), 186.7 (O–C=O), 202.1 (C³=O). ν_{max} (KBr) 1751 (O–C=O), 1702 (C=O), 1649, 1565 (C=C) $\rm cm^{-1}$. UV (ethanol): $\lambda_{\rm max}$ (lg ε)=232 (4.11), 283 nm (3.92).

4.2.3. 1-(Acetyloxy)-5-tert-butyl-2,2-dimethyl-1,2-dihydro-3H-pyrrol-3-one 14d

A solution of pyrroline 1d (0.3 g, 1.64 mmol) and acetic anhydride (0.16 mL, 1.64 mmol) in CHCl $_3$ (3 mL) was kept for 5 days at room temperature then washed with aqueous solution of $Na₂CO₃$ (3 mL) , dried (MgSO₄), and evaporated. Compound **14d** was isolated by silica gel column chromatography (CHCl₃). Yield: 0.22 g (82%), mp 79–81 °C (lit.¹ mp 78–80 °C). R_f (CHCl₃) 0.42.

4.2.4. 1-(Benzyloxy)-2,2-dimethyl-5-phenyl-1,2-dihydro-3H-pyrrol-3-one 16

2,2,4,5,5-Pentamethyl-2,5-dihydro-1H-imidazol-1-ol (2.0 g, 12.82 mmol) was added to a stirred suspension of NaH (0.6 g, 25.63 mmol) in N,N-dimethylformamide (10 mL) under argon. The mixture was stirred for 15 min and then benzyl chloride (1.77 mL, 15.38 mmol) was added dropwise. The stirring was continued for 4.5 h, then the reaction mixture was poured into brine (100 mL) and extracted with hexane $(2\times20 \text{ mL})$. The combined extract was washed with portion of water (10 mL) and then with brine (10 mL), dried (MgSO₄), and evaporated. 1-(Benzyloxy)-2,2,4,5,5-pentamethyl-2,5-dihydro-1H-imidazole was purified on an Al_2O_3 column (hexane, hexane/diethyl ether (1:1)). Yield: 2.3 g (75%), colorless oil. R_f (50% diethyl ether/hexane) 0.45. HRMS (EI): M⁺, found: 246.1736. C₁₅H₂₂N₂O requires: 246.1732. δ_H (300 MHz, CDCl₃) 1.19 (6H, s, C⁵–(CH₃)₂), 1.33 (6H, s, C²–(CH₃)₂), 1.88 (3H, s, C⁴–(CH₃)), 4.74 $(2H, s, OCH₂)$, 7.30–7.39 (5H, m, Ph). δ_C (62 MHz, CDCl₃) 16.2 (CH₃), 21.0, 23.8, 27.9, 31.1 (C^5 –(CH_3)₂, C^2 –(CH_3)₂), 72.4 (C^5), 78.6 (CH₂), 90.1 (C²), 128.0 (p-Ph), 128.4, 129.0 (o,m-Ph), 138.1 (i-Ph), 174.9 (C⁴). ν_{max} (CCl₄) 1651 (C=N) cm⁻¹.

A solution of 1-(benzyloxy)-2,2,4,5,5-pentamethyl-2,5-dihydro-1H-imidazole (1.3 g, 5.28 mmol) in diethyl ether (10 mL) was added dropwise to a well stirred ice-cold solution of LDA (prepared from lithium (0.15 g, 21.14 mmol), bromobenzene (1.22 mL, 11.62 mmol) and N,N-diisopropylamine (1.46 mL, 10.56 mmol) in anhydrous diethyl ether (20 mL)) under argon. The stirring was continued for 45 min and then the ethyl benzoate (1.13 mL, 7.93 mmol) was added to an ice-cold reaction mixture in two portions. The mixture was stirred for 1 h, then water (15 mL) was added. The ether layer was separated, the aqueous one extracted with $CHCl₃$ (15 mL). Combined organic extract was dried $(MgSO₄)$ and evaporated. 2-(1-(Benzyloxy)-2,2,5,5-tetramethylimidazolidin-4-ylidene)-1-phenylethanone was purified on a silica gel column (CHCl $_3$ /CH $_3$ OH (30:1)). Yield: 1.6 g (90%), mp 59.5–60.5 °C (hexane). R_f (CHCl₃) 0.19. HRMS (EI): M^{+} , found: 350.1990. C₂₂H₂₆N₂O₂ requires: 350.1994. δ_H (400 MHz, CDCl₃) 1.43 (12H, s, C²–(CH₃)₂, C⁵–(CH₃)₂), 4.82 (2H, s, CH₂), 5.62 (1H, s, =CH), 7.3–7.5 (8H, m), 7.8–7.9 (2H, m, Ph), 10.32 (1H, br s, NH). δ_C (100 MHz, CDCl₃) 23.3, 24.7, 28.9, 30.9 $(\mathsf{C}^5\text{-}(\mathsf{CH}_3)_2,\, \mathsf{C}^2\text{-}(\mathsf{CH}_3)_2)$, 68.6 (C^5), 79.0 (C^2), 80.6 (CH_2), 83.3 (CH), 126.8, 128.0, 128.2, 128.6 (o,m-Ph), 127.9, 130.5 (p-Ph), 137.2, 140.1 $(i-Ph)$, 169.3 (C⁴), 189.4 (C=O). ν_{max} (CCl₄) 1623, 1622, 1600, 1583,

1539 (O=C–C=C–N) cm⁻¹. UV (ethanol): λ_{max} (lg ε)=242 (3.90), 331 nm (4.28).

A solution of 2-(1-(benzyloxy)-2,2,5,5-tetramethylimidazolidin-4 ylidene)-1-phenylethanone (0.5 g) in a mixture methanol–20% HCl $(1:1)$ was heated at 52 °C for 24 h, then it was evaporated nearly to half of the volume, neutralized by 5% NaOH, and extracted with CHCl₃ (3×15 mL). Combined extract was dried by MgSO₄ and evaporated. 1-(Benzyloxy)-2,2-dimethyl-5-phenyl-1,2-dihydro-3Hpyrrol-3-one 16 and 1-(benzyloxy)-2,2-dimethyl-5-phenyl-1,2-dihydro-3H-pyrrol-3-imine 19 were separated on a silica gel column (CHCl₃, CHCl₃/CH₃OH (15:1)). Yields of products **16** and **19** are 0.2 g (50%) and 0.1 g (25%), respectively.

Compound 16: mp 61–63 °C. R_f (CHCl₃) 0.53. HRMS (EI): M⁺, found: 293.1412. C₁₉H₁₉NO₂ requires: 293.1416. $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.50 (6H, s, C–(CH₃)₂), 5.06 (2H, s, CH₂), 5.56 (1H, s, CH), 7.12– 7.22 (2H, m), 7.26–7.31 (3H, m), 7.40–7.50 (3H, m), 7.56–7.60 (2H, m, Ph). δ_C (75 MHz, CDCl₃) 23.4 (C–(CH₃)₂), 72.8 (C–(CH₃)₂), 79.0 (CH₂), 104.9 (C⁴), 128.4, 128.6, 128.7, 128.8, 129.0, 131.1, 131.3, 135.1 (Ph), 177.6 (C⁵), 202.3 (C³=O). v_{max} (KBr) 1694 (O=C–C=C) cm⁻¹. UV (ethanol): λ_{max} (lg ε)=256 (4.04), 301 nm (3.97).

Compound 19: mp 166–169 °C. R_f (7% MeOH/CHCl3) 0.07. HRMS (EI): M⁺, found: 292.1574. C₁₉H₂₀N₂O requires: 292.1576. δ_H $(300 \text{ MHz}, \text{CDCl}_3)$ 1.81 (6H, s, C– $(\text{CH}_3)_2$), 5.03 (2H, s, CH₂), 6.10 (1H, s, C⁴ H), 7.18–7.23 (2H, m), 7.28–7.35 (3H, m), 7.44–7.52 (2H, m), 7.54–7.62 (1H, m), 7.68–7.72 (2H, m, Ph), 10.27 (1H, br s, NH). δ_C (75 MHz, CDCl₃) 24.3 (C-(CH₃)₂), 74.3 (C-(CH₃)₂), 80.6 (CH₂), 95.0 (C^4) , 128.0, 129.0, 129.1, 129.3 (2 signals), 129.5, 133.1, 133.4 (Ph), 174.8 (C^5), 183.2 (C^3). ν_{max} (KBr) 2877 (N-H), 1682,1600, 1581 (C=C–C=N) cm $^{-1}$. UV (ethanol): λ_{max} (lg ε)=272 (4.01), 350 nm (4.02).

4.2.5. Reaction with the Vilsmeier reagent (general method)

 $POCl₃$ (0.19 mL, 2.00 mmol) was added dropwise to ice-cold N,N-dimethylformamide (2 mL). The solution was stirred for 10 min, compounds 1, 2a, 8, 9, 14d, 16, or 17 (1.00 mmol) were added and the stirring was continued for 3 h at 20 $\,^{\circ}$ C. The reaction mixture was poured into the saturated ice-cold solution of $Na₂CO₃$ (7 mL), the resulting mixture was kept at 20 $\mathrm{^{\circ}C}$ for 30 min and then extracted either with diethyl ether or CHCl₃. Combined extract was thoroughly washed with water, dried by MgSO₄, and evaporated. The crude product was purified as described below.

4.2.5.1. 4-Chloro-2,2-dimethyl-5-phenyl-1,2-dihydro-3H-pyrrol-3-one **2a**. Compound **2a** was extracted with ether $(3\times15$ mL). The residue after evaporation was triturated with a small amount of diethyl ether, the resultant precipitate 2a was filtered off and recrystallized from a mixture of hexane/EtOAc, yield: 33%, mp 190–191 $^\circ$ C (lit. 1 mp 190–191 °C). δ_C (50 MHz, CDCl₃) 24.2, 24.3 (C²–(CH₃)₂), 63.9 (C^2) , 101.1 (C^4) , 127.9, 128.8, 129.5, 132.3 (Ph), 167.8 (C^5) , 198.3 $(C=0)$.

4.2.5.2. 4-Chloro-2,2-dimethyl-5-(trifluoromethyl)-1,2-dihydro-3Hpyrrol-3-one 2b. Compound 2b was purified by sublimation at 2 mmHg and 40-50 °C. Yield: 25 %, mp 138-139 °C (hexane/EtOAc). [Found: C 40.10, H 3.30, N 6.63, Cl 16.56. C₇H₇NOF₃Cl requires: C 39.34, H 3.28, N 6.56, Cl 16.63%.] HRMS (EI): M⁺, found: 213.0167. C₇H₇ClF₃NO requires: 213.0168. δ_H (200 MHz, CDCl₃) 1.37 (6H, s, C^2 –(CH₃)₂), 6.28 (1H, br s, NH). δ_C (50 MHz, CDCl₃) 22.3, 23.6 (C²– (CH₃)₂), 64.9 (C²), 103.2 (C⁴), 118.8 (q, J 275 Hz, CF₃), 156.2 (q, J 37 Hz, $C⁵$), 199.0 (C=O). ν_{max} (KBr) 3181 (N-H), 1668 (C=O), 1569 (C=C), 1227, 1192, 1171, 1138 (CF₃) cm⁻¹. UV (ethanol): λ_{max} (lg ε)=335 nm (3.89).

4.2.5.3. 3,4-Dichloro-2,2-dimethyl-5-phenyl-2H-pyrrole 3a. Compound 3a was extracted with ether $(3\times15 \text{ mL})$ and isolated on a silica gel column (diethyl ether), yield: 50%, mp 25.5–27 °C. R_f

 $(CHCl₃)$ 0.36. HRMS (EI): M⁺, found: 239.0272. C₁₂H₁₁Cl₂N requires: 239.0269. δ_H (200 MHz, CDCl₃) 1.42 (6H, s, C²-(CH₃)₂), 7.4–7.5 (3H, m), 7.85–7.95 (2H, m, Ph). δ_C (50 MHz, CDCl₃) 23.0 (C²-(CH₃)₂), 75.9 (C^2) , 122.4 (C^4) , 128.3, 128.6, 130.5, 132.5 (Ph), 157.8 (C^3) , 166.7 (C^5) . ν_{max} (CCl₄) 1605, 1580, 1533 (C=C, C=N) cm⁻¹. UV (ethanol): λ_{max} $($ lg ε $)=$ 251 nm (4.12).

4.2.5.4. 5-tert-Butyl-3,4-dichloro-2,2-dimethyl-2H-pyrrole 3d. Compound 3d was extracted with ether $(3\times15 \text{ mL})$ and purified on a silica gel column (mixtures of hexane/diethyl ether from 10:0 to 10:1), yield: 11%, mp 22-23 °C. R_f (50% diethyl ether/hexane) 0.58. HRMS (EI): M⁺, found: 219.0582. C₁₀H₁₅Cl₂N requires: 219.0582. δ_H $(400 \text{ MHz}, \text{ CDC1}_3)$ 1.26 (6H, s, $C^2-(CH_3)_2)$, 1.32 (9H, s, t-Bu). δ_C (100 MHz, CDCl₃) 23.0 (C²–(CH₃)₂), 27.2 (C–(CH₃)₃), 35.9 $(C-(CH₃)₃)$, 74.3 $(C²)$, 122.4 $(C⁴)$, 157.6 $(C³)$, 175.2 $(C⁵)$. ν_{max} (KBr) 1601, 1539 (C=C, C=N) cm⁻¹. UV (ethanol): $λ_{max}$ (lg $ε$)=244 nm (3.61).

4.2.5.5. 3,4-Dichloro-2,2-dimethyl-5-methylene-2,5-dihydro-1H-pyrrole-1-carbaldehyde 4. Compound 4 was isolated by extraction with CHCl₃ (3×15 mL) and purified on a silica gel column (hexane/ diethyl ether (10:1)). Yield of the isomers mixture: 53%, colorless oil. R_f (CHCl₃) 0.24. HRMS (EI): M⁺, found: 205.0061. C₈H₉Cl₂NO requires: 205.0061. δ_H (300 MHz, CDCl₃, 25 °C) 1.54 (6H, s, C²- $(CH_3)_2$, **A**), 1.59 (6H, s, C²–(CH₃)₂, **B**), 4.57 (1H, d, J 3.3 Hz, H_bCH_a, **B**), 4.67 (1H, d, J 3.3 Hz, H_aCH_b , B), 4.91 (1H, d, J 1.0 Hz, H_bCH_a , A), 5.95 $(1H, d, J 1.0 Hz, H_aCH_b, A), 8.56 (1H, s, HC=0, A), 8.75 (1H, s, HC=0,$ **B**). δ_C (75 MHz, CDCl₃,) 22.9 (q, J 130.7 Hz, C²–(CH₃)₂, **B**), 26.6 (q, J 129.2 Hz, C^2 –(CH₃)₂, **A**), 67.8 (C^2 –(CH₃)₂, **A**), 69.3 (C^2 –(CH₃)₂, **B**), 83.7 (dd, J 166.1, 162.1 Hz, CH₂, B), 94.3 (dd, J 170.6, 160.5 Hz, CH₂, **A**), 122.5 (C⁴, **B**), 124.1 (C⁴, **A**), 135.4 (C³, **A**), 139.3 (C³, **B**), 140.5 (C⁵, **A**), 142.5 (C⁵, **B**), 156.9 (d, J 212.4 Hz, HC=O, **B**), 158.7 (d, J 196.2 Hz, HC=0, A). v_{max} (CCl₄) 1755 (H–C=0), 1694, 1617 (C=C, C=N) cm⁻¹. The molar ratio of isomers is $A/B=1:1.7$.

4.2.5.6. N-[2-(3,4-Dichloro-2,2-dimethyl-2H-pyrrol-5-yl)vinyl]-N,Ndimethylamine 5 and (3,4-dichloro-5,5-dimethyl-1,5-dihydro-2Hpyrrol-2-ylidene)acetaldehyde 6. Compounds 5 and 6 were synthesized according to a general method using 3 mmol of POCl3 (instead of 2 mmol). A mixture of products was extracted with CHCl₃ (3×15 mL) and the products were separated on an Al₂O₃ column (CHCl₃). Yields of compounds **5** and **6** are 11% and 3%, respectively.

Compound 5: mp 70–73 °C (hexane). R_f (CHCl₃) 0.04. HRMS (EI): M⁺, found: 232.0531. C₁₀H₁₄Cl₂N₂ requires: 232.0534. δ_H (300 MHz, CDCl3) 1.30 (6H, s, C(CH3)2), 2.92 (6H, s, N(CH3)2), 4.95 (1H, d, J 13.2 Hz, CH), 7.60 (1H, d, J 13.2 Hz, HC–NMe₂). δ_C (75 MHz, CDCl₃) 24.1 (s, N(CH₃)₂, C(CH₃)₂), 74.2 (C(CH₃)₂), 84.9 (N¹=C⁵-C=C-N), 123.4 (C^4), 147.0 (N¹= C^5 -C=C-N), 153.9 (C^3), 165.2 (C^5). ν_{max} (KBr) 1641, 1602 (N=C–C=C–N) cm⁻¹. UV (ethanol): λ_{max} (lg ε)=253 (4.11), 350 nm (4.19).

Compound 6: mp 101-104 °C. R_f (CHCl₃) 0.38. HRMS (EI): M⁺, found: 205.0057. C₈H₉Cl₂NO requires: 205.0061. $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.43 (6H, s, C(CH₃)₂), 5.39 (1H, d, J 2.1 Hz, CH), 9.26 (1H, d, J 2.1 Hz, $HC=O$), 9.50 (1H, br s, NH). v_{max} (KBr) 3313 (NH), 1639, 1592, 1562 (O=C-C=C-N) cm⁻¹.

4.2.5.7. 2-Chloro-2-(1,2,2,5,5-pentamethylimidazolidin-4-ylidene)- 1-phenylethanone 10 . Compound 10 was extracted with CHCl₃ $(3\times15$ mL) and purified on a silica gel column (CHCl₃), yield: 40%, mp 168.5–169 °C (hexane/EtOAc). R_f (CHCl₃) 0.68. [Found: C 65.46, H 7.28, N 9.58, Cl 12.11. C₁₆H₂₁ClN₂O requires: C 65.64, H 7.18, N 9.57, Cl 12.14%.] δ_H (200 MHz, CDCl₃) 1.39 (6H, s, C⁵-(CH₃)₂), 1.51 (6H, s, C^2 –(CH₃)₂), 2.33 (3H, s, N–CH₃), 7.24 (3H, m), 7.36 (2H, m, Ph), 11.33 (1H, br s, NH). δ_C (75 MHz, CDCl₃) 22.8 (C⁵–(CH₃)₂), 26.0 (N–CH₃), 27.1 $(C^2-(CH_3)_2)$, 67.7 (C^5) , 78.6 (C^2) , 93.8 $(C-C1)$, 127.4, 127.6

(o,m-Ph), 129.2 (p-Ph), 140.7 (i-Ph), 167.2 (C⁴), 191.4 (C=O). $\nu_{\rm max}$ (KBr) 3223 (NH), 1595, 1538 (O $=$ C–C $=$ C–N), 1278 (C–N) cm $^{-1}$. UV (ethanol): λ_{max} (lg ε)=241 (3.59), 342 nm (4.03).

4.2.5.8. 3-Chloro-2,2-dimethyl-5-phenyl-2H-pyrrol-4-yl benzoate 11a and 4-chloro-5,5-dimethyl-2-phenyl-4,5-dihydro-3H-pyrrol-3 one 12a. A mixture of products 11a, 3a, and 12a was extracted with ether (3×15 mL) and purified on a silica gel column (diethyl ether). The products were separated on a silica gel column (CHCl₃, CHCl₃/ CH₃OH (100:1)). Yield of $11a-30%$, yield of a mixture of 3a and $12a-22%$. Compound $12a$ was not isolated in individual form because of its low stability upon chromatography.

Compound 11a: mp 65–66.5 °C (hexane). R_f (3% MeOH/CHCl₃) 0.18. HRMS (EI): M^{+} , found: 325.0870. C₁₉H₁₆ClNO₂ requires: 325.0870. $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.50 (6H, s, C²–(CH₃)₂), 7.3–7.4 (3H, m), 7.45–7.55 (2H, m), 7.6–7.7 (1H, m), 8.1–8.2 (2H, m), 8.8–8.9 (2H, m, 2 Ph). $\delta_{\sf C}$ (100 MHz, CDCl3) 23.1 (C²–(CH3)₂), 73.4 (C²), 132.5 (C³), 127.2, 128.0, 128.5, 128.7, 130.2, 130.5, 134.0, 139.3 (2Ph), 148.0 (C⁴), 162.4 (C⁵), 165.8 (O–C=O). ν_{max} (KBr) 1757 (O–C=O), 1644 (C=C– C=N) cm $^{-1}$. UV (methanol): λ_{max} (lg ε)=238 nm (4.40).

X-ray crystallography experiment. Data for compound 11a $(2\theta<50^{\circ})$ were measured on a Bruker P4 single crystal diffractometer, with graphite monochromated Mo- K_{α} radiation. A correction for absorption was made by integration method (transmission 0.8166–0.9485). The structure was solved by the direct method using the SHELXS-97 program and refined in the full-matrix anisotropic (isotropic for H atoms) approximation by the SHELXL-97 program. The hydrogen atom positions were located geometrically. Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-623496. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: $+44$ (0) 1223 336033 or e-mail: [deposit@ccdc.cam.ac.uk\)](mailto:deposit@ccdc.cam.ac.uk).

X-ray structure data for **11a**: $C_{19}H_{16}CINO_2$, *M*=325.78, monoclinic, a=9.3024(12), b=34.622(4), c=10.3003(10)Å, β =90.315(10)°, V=3317.4(7) Å³, space group P2₁/c, Z=8, d_c=1.305 g cm⁻³, μ (Mo- K_{α})=0.239 mm⁻¹, F(000)=1360. The final indexes are S=1.024, R_1 =0.0512, wR₂=0.1155 for all 5818 independent reflections and R_1 =0.0402, wR₂=0.1076 for 4720 F_0 >4 σ .

Compound 12a: R_f (CHCl₃) 0.49. HRMS (EI): M⁺, found: 221.0605. C₁₂H₁₂ClNO requires: 221.0607. δ_H (400 MHz, CDCl₃) 1.39 (3H, s), 1.57 (3H, s, $\mathsf{C}^5\text{-}(\mathsf{CH}_3)_2$), 4.19 (1H, s, C^4H), 7.40–7.52 (3H, m), 8.15–8.20 (2H, m, Ph). δ_C (100 MHz, CDCl₃) 26.5, 27.9 (C⁵–(CH₃)₂), 66.1 (C^4), 67.9 (C^5), 128.4, 128.8, 132.1, 132.5 (Ph), 163.6 (C^2), 196.2 (C^3) .

4.2.5.9. 5-tert-Butyl-3-chloro-2,2-dimethyl-2H-pyrrol-4-yl benzoate 11d and 2-tert-butyl-4-chloro-5,5-dimethyl-4,5-dihydro-3H-pyrrol-3-one **12d**. The reaction mixture was extracted with CHCl₃ $(3\times15$ mL), a mixture of products was separated by preparative TLC on an Al_2O_3 (hexane). Yield of $11d-6%$, yield of chromatographically homogenous mixture of 3d and $12d-15%$.

Compound **11d**: mp 123–124.5 °C (hexane). R_f (50% diethyl ether/hexane) 0.45. HRMS (EI): M⁺, found: 305.1180. C₁₇H₂₀ClNO₂ requires: 305.1183. δ_H (400 MHz, CDCl₃) 1.29 (9H, s, t-Bu), 1.46 (6H, s, $C^2-(CH_3)_2$), 7.50–7.58 (2H, m, m-Ph), 7.63–7.69 (1H, m, p-Ph), 8.12–8.15 (2H, m, o-Ph). δ_C (100 MHz, CDCl₃) 23.1 (C²–(CH₃)₂), 27.4 (C–(CH₃)₃), 35.8 (C–(CH₃)₃), 72.5 (C²), 128.1 (s, C³, *i*-Ph), 129.1, 130.5, 134.5 (m,o,p-Ph), 139.4 (C⁴), 161.9 (s, C⁵, O–C=O). ν_{max} (KBr) 1754 (O–C=O), 1645 (C=C–C=N) cm⁻¹. UV (ethanol): λ_{\max} $($ lg ε $)=$ 233 nm (4.26).

Compound 12d: R_f (50% diethyl ether/hexane) 0.58. GC-MS: found $m/z=201$: C₁₀H₁₆ClNO. δ_H (400 MHz, CDCl₃) 1.25 (12H, s, $C-(CH_3)_3, C^5-(CH_3)$), 1.44 (3H, s, $C^5-(CH_3)$), 3.95 (1H, s, C^4H). δ_C $(100 \text{ MHz}, \text{ CDCl}_3)$ 26.4, 27.9 $(C^5-(CH_3)_2)$, 27.0 $(C-(CH_3)_3)$, 34.9 $(C-(CH₃)₃), 66.0 (C⁴), 67.0 (C⁵), 175.3 (C²), 196.0 (C³).$

4.2.5.10. A reaction of a mixture of compounds 8a and 14d with the Vilsmeier reagent. The reaction was carried out according to the general method. The ratio of starting compounds 8a/14d was 1:1. The reaction mixture was extracted with CHCl₃ (3×15 mL) and the resulting mixture was purified by filtration through silica gel layer using chloroform as solvent. Then the mixture was analyzed with GC–MS: found $m/z=239$: C₁₂H₁₁Cl₂N (4.2), **3a**; $m/z=219$: C₁₀H₁₅Cl₂N (11.5), 3d; $m/z=221$: C₁₂H₁₂ClNO (3.6), 12a; $m/z=201$: C₁₀H₁₆ClNO (10.1), **12d**; $m/z=325$: C₁₉H₁₆ClNO₂ (10.1), **11a**; $m/z=$ 243: C₁₂H₁₈ClNO₂ (1.0), **15d**; $m/z=263$: C₁₄H₁₄ClNO₂ (3.6), **15a**; $m/z=305$: C₁₇H₂₀ClNO₂ (1.8), **11d**, the molar ratio of products is given in parentheses.

4.2.5.11. A reaction of compound 16 with the Vilsmeier reagent. The reaction was carried out according to the general method. The reaction mixture was extracted with CHCl₃ (3×15 mL) and the products were separated on a silica gel column (hexane, mixtures hexane/diethyl ether with ratio from 10:1 to 1:2). Yields of benzyl chloride, compound 3a, and compound 12a are 14%, 22% and 50%, respectively.

4.2.5.12. A reaction of compound 17 with the Vilsmeier reagent. The reaction was carried out according to the general method. The reaction mixture was extracted with CHCl₃ (3×15 mL) and the products 17 and 3a were separated on a silica gel column (CHCl₃). A conversion was 63%, yield of $3a-21%$.

4.2.5.13. 1-(Benzoyloxy)-4-chloro-5,5-dimethyl-2-(trifluoromethyl)- 2,5-dihydro-1H-pyrrol-2-ol 18. Compound 18 was extracted with ether $(3\times15$ mL) and isolated on a silica gel column (hexane/ diethyl ether $(10:1)$). A conversion was 65%, yield of **18** -40 %, mp 128–129 °C (hexane/EtOAc). R_f (20% diethyl ether/hexane) 0.44. [Found: C 49.94, H 3.86, N 4.12, Cl 10.48. C₁₄H₁₃ClF₃NO₃ requires: C 50.07, H 3.87, N 4.17, Cl 10.58%.] δ_H (400 MHz, (CD₃)₂CO) 1.38 (3H, s), 1.50 (3H, s, C^2 –(CH₃)₂), 6.10 (1H, s, C⁴H), 6.6–6.7 (1H, br s, OH), 7.5–7.6 (2H, m), 7.65–7.69 (1H, m), 8.08–8.16 (2H, m, Ph). δ_C $(100 \text{ MHz}, (\text{CD}_3)_2\text{CO})$ 23.2, 25.1 $(\text{C}^2-(\text{CH}_3)_2)$, 73.1 (C^2) , 93.4 (q, J) 33 Hz, C^5), 120.0 (C^4), 123.7 (q, J 284 Hz, CF₃), 129.5, 129.6, 130.5, 134.4 (Ph), 146.2 (C^3), 165.2 (O–C=O). ν_{max} (KBr) 3379 (OH), 1736 (O–C=O), 1188 (CF₃) cm^{–1}. UV (ethanol): λ_{max} (lg ε)=229 (4.00), 275 (3.06), 282 (3.06), 316 nm (3.35).

References and notes

- 1. Reznikov, V. A.; Vishnivetskaya, L. A.; Volodarskii, L. B. Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) 1990, 39, 335–340.
- 2. Kallury, R. K. M. R.; Devi, P. S. U. Tetrahedron Lett. 1977, 41, 3655–3658.
- 3. Ashok, K.; Sridevi, G.; Umadevi, Y. Synthesis 1993, 623–626.
- 4. Anderson, D. J. J. Org. Chem. 1986, 51, 945–947.
- 5. Beccalli, E. M.; Marchesini, A. J. Org. Chem. 1987, 52, 3426–3434.
- 6. Beccalli, E. M.; Marchesini, A.; Molinari, H. Tetrahedron Lett. 1986, 27, 627–630.
- 7. Reznikov, V. A.; Vishnivetskaya, L. A.; Volodarskii, L. B. Chem. Heterocycl. Compd. (Engl. Transl.) 1988, 504-508.
- 8. Cummins, C. H.; Coates, R. M. J. Org. Chem. 1983, 48, 2070–2076.
- 9. Demeunynck, M.; Tohme, N.; Lhomme, M.-F.; Mellor, J. M.; Lhomme, J. J. Am. Chem. Soc. 1986, 108, 3539–3541.
- 10. Gutteridge, N. J.; Dales, J. R. M. J. Chem. Soc. C 1971, 122–125.
- 11. Gibson, N. J.; Forrester, A. R. J. Chem. Soc., Perkin Trans. 1 1995, 491–499.
- 12. Black, D. St. C.; Strauch, R. J. Aust. J. Chem. 1989, 42, 71–78.
- 13. Reznikov, V. A.; Volodarskii, L. B. Chem. Heterocycl. Compd. (Engl. Transl.) 1990, 7, 767–772.
- 14. Martin, V. V.; Volodarskii, L. B. Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) 1980, 29, 956–962.